
CPS Modeling Integration Hub

and Design Space Exploration with
Application to Microrobotics

Yuchen Zhou and John S. Baras

The Institute for Systems Research
and Electrical and Computer Engineering Department,
University of Maryland, College Park, Maryland, USA

{yzh89,baras}@umd.edu

Abstract. We describe a new methodology and environment for Cyber
Physical Systems (CPS) synthesis and demonstrate it in the design of
microrobots viewed as CPS. Various types of microrobots have been
developed in recent years for applications related to collaborative motion
such as, sensor networks, exploration and search-rescue in hazardous
environments and medical drug delivery. However, control algorithms
for these prototypes are very limited. Our new approach for modeling
and simulation of the complete microrobotics system allows the robots to
complete more complex tasks as per specifications. Since the microrobots
tend to have small features, complex micro-structures and hierarchy, the
control laws cannot be designed separately from the physical layer of
the robots. Such a type of microrobot is indeed a CPS, as control in the
cyber side, and the material properties and geometric structure in the
physical side, are tightly interrelated. This design approach is important
for microrobots, capable of collaborating and completing complex tasks.

Keywords: Modelica, Microrobot, CPS, System model.

1 Introduction: Synthesis Environment for CPS

The rapid development of information technology (in terms of processing power,
embedded hardware and software systems, comprehensive IT management sys-
tems, networking and Internet growth, system design and integration environ-
ments) is producing an increasing number of applications and opening new doors.
In addition, over the last decade, we entered a new era where systems complex-
ity has increased dramatically. Complexity is increased both by the number
of components that are included in each system as well as by the dependen-
cies between those components. Cyber-Physical Systems (CPS) are engineered
systems constructed as networked interactions of physical and computational
(cyber) components. In CPS, computations and communications are deeply em-
bedded in and interacting with physical processes, and add new capabilities to
physical systems. The challenge in CPS is to incorporate the inputs (and their
characteristics and constraints) from the physical components in the logic of the

D.C. Tarraf (ed.), Control of Cyber-Physical Systems, 23

Lecture Notes in Control and Information Sciences 449,

DOI: 10.1007/978-3-319-01159-2_2, c© Springer International Publishing Switzerland 2013

24 Y. Zhou and J.S. Baras

cyber components (hardware and software). Whole industrial sectors are trans-
formed by new product lines that are CPS-based. Modern CPS are not simply
the connection of two different kinds of components engineered by means of dis-
tinct design technology, but rather, a new system category that is both physical
and computational. Current industrial experience tells us that, in fact, we have
reached the limits of our knowledge of how to combine computers and physical
systems. The shortcomings range from technical limitations in the foundations
of cyber-physical systems to the way we organize our industries and educate en-
gineers and scientists that support cyber-physical system design. If we continue
to build systems using our very limited methods and tools but lack the science
and technology foundations, we will create significant risks, produce failures and
lead to loss of market.

If a successful contribution is to be made in shaping this change, the revo-
lutionary potential of CPS must be recognized and incorporated into internal
development processes at an early stage. For that Interoperability and Integrata-
bility of CPS is critical. In our recent research [1], [2], [3], [4], [5], [6] we have
initiated the development of a framework to facilitate interoperability and inte-
gratability of CPS. Currently there is a lack of well-defined tools and synthesis
environments for CPS. CPS synthesis requires cross-domain concepts for ar-
chitecture, communication and compatibility at all levels. The effects of these
factors on existing or yet undeveloped systems and architectures represent a
major challenge. The aim of our recent research is precisely to clarify these
objectives and systematically develop detailed recommendations and synthesis
environments for CPS. We have focused our efforts in two essential problems:
(i) A framework for developing cross-domain integrated modeling hubs for CPS.
(ii) The creation and demonstration of an initial framework for linking the in-
tegrated CPS modeling hub of (i) with powerful and diverse tradeoff analysis
methods and tools for design space exploration for CPS.

1.1 Model-Based Systems Engineering

MBSE [7] has emerged as a promising methodology for the systematic design,
performance evaluation and validation of complex engineering systems. “Model-
Based Systems Engineering (MBSE) is the formalized application of modeling to
support system requirements, design, analysis, verification and validation activ-
ities beginning in the conceptual design phase and continuing throughout devel-
opment and later life cycle phases” [7]. MBSE facilitates the flow of requirements
through models, a methodology that is at the same time compact and enforces
consistency between data and requirements (through the models). Figure 1 de-
scribes the basic steps of the MBSE process that we have developed, and have
been teaching at the University of Maryland (UMD) for several years. A most
recent development of particular importance is the development and teaching of
a new hands-on undergraduate course at UMD, ENES489P “Hands-on Systems
Engineering Projects”. This MBSE process has the following steps (phases):
Requirements Collection, Construction of System Structure Model (what the
system consists of), Construction of System Behavior Model (what the system

CPS Modeling Integration Hub and Design Space Exploration 25

does), Mapping of Behavior onto Structure (what structure components will per-
form parts of behavior), Allocation of Requirements to Structure and Behavior
Components, Trade-Off Analysis, Validation and Verification. As illustrated in
Figure 1, the process moves between these steps in an iterative manner, until
satisfactory alternative system designs are developed. The process is executed
at different levels of granularity (detail/aggregation). As the MBSE process ex-
ecutes a system architecture is developed through the creation of behavior and
structure components, their interrelationships and the allocation of behavior
components to structure components.

1.2 Systems Modeling Language (SysML)

Fig. 1. Model-Based Systems Engineering Process [9]

SysML [8] is a general
purpose graphical model-
ing language that was de-
veloped based on UML
and is a key enabler for
the MBSE process by
providing ways for the
representation and anal-
ysis of complex engi-
neering systems. SysML
supports the specifica-
tion, analysis, design, ver-
ification, and validation
of systems that include
hardware, software, data,
personnel, procedures, and facilities. SysML supports model and data inter-
change via XML Metadata Interchange (XMI) and the AP233 standard. Recent
research has demonstrated the use of SysML [8] as a centerpiece abstraction for
team-based system development, with a variety of interfaces and relationship
types (e.g., parametric, logical and dependency) providing linkages to detailed
discipline-specific analyses and orchestration of system engineering activities.
The four fundamental pillars of SysML are the support of models for the struc-
ture of the system, models of the behavior of the system, models for capturing
the requirements for the system via the new requirements diagram of the system,
and the new and innovative parametric diagram of the system, which ties design
variables and metric parametric representations to the structure and behavior
models (a kind of annotation of these models). Parametric diagrams are the
key to linking SysML-based system models to analysis models, including trade-
off analysis models such as multi-metric optimization (e.g. IBM-ILOG CPLEX)
and constraint based reasoning tools (e.g. IBM-ILOG Solver). SysML, as a lan-
guage for describing the system architecture, is a catalyst for the integration
of various modeling environments, as well as analysis/design environments, for
complex systems, while allowing multiple disciplinary views of the system and
its components, as illustrated in Figure 2, where the System Architecture Model

26 Y. Zhou and J.S. Baras

is described via SysML. Our research has taken several key steps towards the
development of new foundations for this model integration framework we call
CPS modeling integration hubs. We have recently developed [3], [6] such
hubs for power grids, microrobotics, energy efficient buildings, vehicle manage-
ment systems for next generation all-electric aircraft, sensor networks, robotics
and collaborative swarms.

1.3 CPS Modeling Integration Hub Architecture

Fig. 2. Multi-domain model integration via system ar-
chitecture model (SysML)

A major challenge in
MBSE for CPS is to
have models that are con-
sistent with each other.
However, besides having
consistent data there is
a need for the models
to work together in or-
der to offer a holistic
Systems Engineering ap-
proach to the designer of
CPS. SysML is used in
the core of our model-
ing integration hub (Fig.
2 and Fig. 3). The main
aim is to integrate this
core module with external
tools, each one used in a
different phase of the Systems Engineering process [10]. The resulting MBSE
environment can be thought of as a “virtual” product line management (PLM)
environment for CPS, across discipline tools. To achieve this integration a three-
layer approach needs to be followed. Initially, for the tool we need to integrate,
a domain specific profile is created in SysML. Then a model transformation is
defined, followed by the implementation of tool adapters that are used as a mid-
dleware for exchanging information between the model transformation layer and
the other components of the hub. Fig. 3 presents these layers as well as the areas
for which we need to integrate tools with the core module to realize the MBSE
vision of a system design experience for CPS.

A key component of the emerging framework is a metamodeling environment
with its associated languages and its semantics based on sophisticated versions of
annotated block diagrams and bond graphs [6]. A metamodeling layer stands one
abstraction layer above the actual design implementation in a modeling language.
A metamodel consists of the constructs of a modeling language together with
the rules that specify the allowable relationships between these constructs. It can
be considered as the grammar of that modeling language. At the metamodeling
layer model transformations take place. There are many alternatives in terms
of model transformation tools, like ATL, GME, eMoflon, QVT. In our research

CPS Modeling Integration Hub and Design Space Exploration 27

the eMoflon model transformation tool was used [11], [12]. Finally, tool adapters
work as the “glue” between the different pieces of software. Their role is to
access/change information inside a model and call the appropriate Java functions
generated by the eMoflon tool to perform model transformations [6], [13].

1.4 Tradeoff Analysis and Design Space Exploration

Fig. 3. The Modeling Integration Hub for CPS

Although progress to date
in MBSE facilitates the
integration of system com-
ponent models from differ-
ent domains, we still need
an integrated environment to
optimize system architecture,
manage the analysis and opti-
mization of diverse measures
of effectiveness (MoE), man-
age the various acceptable de-
signs and most than anything
else perform tradeoff analy-
sis. Tradeoff is an essential
part of system design, as it
implements design space ex-
ploration. SysML does not
provide a way for engineers
to formally evaluate and rank
design criteria, conduct sensi-
tivity analysis, search design spaces for better design solutions, and conduct
trade studies. To address this challenge we have introduced [6] the concept
that SysML needs to be integrated with industrial-strength multi-objective al-
gorithms, constraint-based reasoning algorithms, with appropriate linkages to
modeling/simulation environments. An integration of SysML with a tradeoff
tool will allow the designer to make decisions faster and with more confidence.

We have recently developed and demonstrated [6] the first ever integration
of a powerful tradeoff analysis tool (and methodology), Consol-Optcad, which
is a sophisticated multi-criteria optimization tool developed at the University of
Maryland, with our SysML-based modeling integration hubs for CPS. Consol-
Optcad is a multi-objective optimization tool that allows interaction between the
model and the user. It can handle non-linear objective functions and constraints
with continuous values. Another version of Consol-Optcad has been developed
to handle also logical variables, via integer and constraint programming [14].
In systems development and after the system structure is defined there is a
need to calculate the design parameters that best meet the objectives and con-
straints. Usually when we deal with complex systems and optimization is under
consideration, this is not a trivial task. The support of an interactive tool, like
Consol-Optcad, to help the designer resolve the emerging trade-offs is necessary.

28 Y. Zhou and J.S. Baras

A major advantage of Consol-Optcad is that it allows the user to interact with
the tool, while the optimization is under way. The designer might not know or
might not be in a position at the beginning to specify what preferred design
means. Therefore such interaction with the tool could be of great benefit [15],
[16]. Another key feature of Consol-Optcad is the use of the Feasible Sequential
Quadratic Programming (FSQP) algorithm for the solver. FSQP’s advantage is
that as soon as we get an iteration solution that is inside the feasible region, feasi-
bility is guaranteed for the following iterations as well. Moreover, very interesting
is the fact that besides traditional objectives and constraints Consol-Optcad al-
lows the definition of functional constraints and objectives that depend on a
free parameter. Consol-Optcad has been applied to the design of flight control
systems [17], rotorcraft systems [18], integrated product process design (IPPD)
systems [14] and other complex engineering systems.

2 System Level Design of Microrobots as CPS

Microrobotics have been of particular interest to researchers in Robotics and
Control, because of their wide application in collaborative control, medical sen-
sors [19], mobile sensor networks for surveillance [20] and microrobot self-assembly
[21]. Many of the recent prototype designs are based on Microelectromechani-
cal systems (MEMS) fabrication processes using specific mechanisms to create
planar motion through miniature structures. These include using force from elec-
trical static force [22], thermo bending [23] and chemical reactions [24]. However,
current prototype-based design methodology for microrobots is not systematic.
In the design process, control policies are normally designed completely sepa-
rately from the structure after the prototype is manufactured [21], [23]. Such
a process either makes it impossible for the robot to accomplish complicated
tasks autonomously, or require external force to control the motion of the robot
[19]. Modeling the robot requires a very precise description to the physical lay-
ers in the process. Material constraints and material properties are critical for
the microrobotic design [25]. Complex control laws, which are the cyber side,
will not perform well if the physical robot is not well modeled. Moreover, the
simulation and design process of the cyber part become increasingly dependent
on the physical model and will be directly influenced by any changes made in
the physical design. On the other hand, the cyber part affects the stability and
controllability of the physical model as well. This makes the microrobot a com-
plicated CPS. Therefore, a model-based systems engineering approach including
simulation and validation is needed for this process.

In this paper we follow the methodology described in Sections 1.1-1.4, for the
system level modeling and design of microrobots viewed (properly) as CPS. To
model the cyber and physical layers, we chose the Modelica language, due to its
well-known capability for modeling complex physical systems problems [26].

In this paper we focus on a type of walking robot that uses six legs to alter-
natively support the structure and moving forward similar to that of an insect.
Instead of designing a whole new robot, we demonstrate the possible design ex-
ploration enabled by our methodology on a particular prototype of a walking

CPS Modeling Integration Hub and Design Space Exploration 29

microrobot described in [27]. The subject robot [27] utilizes flexible joints to
damp the impact with the ground so as to stabilize the walking motion. Al-
though the overall structure is not complex as shown in Fig. 4a, the model can
be easily made unstable due to the ground collisions even with the flexible joints.
In order to create a more stable model and further explore the design space, a
system level model for this particular robot is created to investigate its stability,
structure alternatives and efficiency.

Fig. 4. The original millirobot is on the left
and the modified millirobot is on the right

The rest of the paper is orga-
nized as follows. Section 3 gives the
analytical approach for the physi-
cal model of the subject walking
robot [27]. Section 4 includes Mod-
elica simulation and results related
to the stability and planar motion
of the robot. Section 5 presents pos-
sible material choices and design
exploration suggested by the sim-
ulation and also its effects on the
control laws. Section 6 gives suggestions on tradeoff analysis and validation be-
fore prototype fabrication using a model-based system engineering approach.

3 The Physical Model

The particular microrobots we are interested in are small robots with micro
features, more specifically with flexible joints which make them more stable. In
the first part of this section, the mechanism of flexible joints will be discussed
and approximated by a torsion spring according to beam theory. In the second
part, the rigid part of the microrobot will be analyzed using multibody dynamics
and kinematics derived from a Lagragian formulation. The ground interaction is
discussed at the end of this section. The physical model creates constraints for
the controller, since the flexible part will break if large force or torque is applied,
and instability can easily arise from the poorly designed structure.

3.1 Flexible Joint Model

Assuming small bending of the joint, all flexible joints of the robot are modeled
as torsion springs derived from beam theory. According to beam theory, the local
curvature ρ of the bending beam is

1

ρ
=

M

EIz
. (1)

where M is the applied moment, E is the Young Modulus of the beam and
Iz is the inertia about the rotational axis. In the case of a rectangular beam,
Iz = 1/12bh3, where b is the beam height and h is the beam width.

30 Y. Zhou and J.S. Baras

For small values of the angle, we obtain a linear relation between the angle
and the torque. The spring constant is therefore,

k =
EIz
l

,

where l is the beam length.

3.2 Kinematics Model

Consider the kinematics model described in Fig. 5. Let R0, R1, R2 be the coor-
dinate frames attached to the joints as shown. Denote (V P

i/j)Rk
as the velocity

of point P attached to body i (Bi) relative to body j (Bj) expressed in the co-
ordinate frame Rk. The twist, including rotational and translational velocities,
of P can be described with respect to R0 using V̂ = [w v]T [28],

(
V̂ P
3/0

)
R3

=
(
V̂ P
3/2

)
R3

+
(
V̂ P
2/1

)
R3

+
(
V̂ P
1/0

)
R3

.

Fig. 5. Mechanical model of one single
leg

Let l1 be the length of B1 and B2 as
shown in Fig. 5 (B1 and B2 constitute
one rigid segment), l2 be the length of B3

and l be the distance between the origin
of R3 and the point of interest P . Then
the relative twists are,

(
V̂ P
3/2

)
R3

=

(
θ̇3e

3
z

le3x × θ̇3e
3
z

)

(
V̂ P
2/1

)
R3

=

(
θ̇2e

2
z

(l2e
2
x + le3x)× θ̇2e

2
z

)

(
V̂ P
1/0

)
R3

=

(
θ̇1e

1
z

(l1e
1
x + l2e

2
x + le3x)× θ̇1e

1
z

)
,

where eix,y,z are unit vectors codirec-
tional with the axes of frame Ri, for
i = 0, 1, . . . 5. All unit vectors of differ-

ent frames can be expressed in terms of e3x,y,z in R3 alone using coordinate
transformations. The Jacobian J of the robot is

(
V̂ P
3/0

)
R3

= J

⎛
⎝
θ̇1
θ̇2
θ̇3

⎞
⎠

Then, we can express J at the point P on B4 as,⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
1 1 1

−l2 sin θ3 − l1 sin θ2 + θ3 −l2 sin θ3 0
−l − l2 cos θ3 − l1 cos θ2 + θ3 −l − l2 cos θ3 −l

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

CPS Modeling Integration Hub and Design Space Exploration 31

The inner loop of the leg in Fig. 5 represents the additional constraint of the
system dynamics, which reduces the system degrees of freedom (DOF). Using the
same method as above, we can compute Jc which has constraint 0 = Jcq̇, where
q is the vector of the generalized coordinates of the robot with entries θi, i =
1, 2, . . . , 5. In the leg model this constraint reduces the necessary coordinates
from 5 to 4.

To solve the dynamics using Euler-Lagrange equation, the kinetic energy has
to be expressed in terms of the generalized coordinates. By using the method
above, we can compute the velocity of every interest point P in terms of gener-
alized coordinates θ1, θ2, θ3, and θ4. For instance, the kinetic energy of B1 and
B2 relative to the lab frame is,

(
T1/0

)
R0

=
1

2
(θ̇1e

1
z)I(θ̇1e

1
z) +

1

2
m1

(
θ̇1e

1
z ×

l1
2
e1x

)2

,

which can be expressed in terms of θ1 and θ̇1 after performing coordinate trans-
formation on e1x. We apply the same process to express the kinetic energy of B3,
B4, B5 but with an extra term to incorporate motion of the center of mass.

The conservative forces are gravity force, ground interaction force, and tor-
sion spring tension. Using the same coordinate transformation method, we can
express them in generalized coordinates as well.

We can invoke the Euler-Lagrange equation for every leg segment, with Q
being the sum of all conservative forces on that segment,

d

dt

∂T

∂q̇
− ∂T

∂q
= Q (2)

3.3 Ground Interaction

The ground interaction as shown in Fig. 5 is modeled as spring and damper with
kinetic friction whenever contact is present. The static friction is not included
because the contact time is short and the tangential speed is always not zero.
First the state is augmented with a relative vertical distance between the origin
of R1 and the origin of R0. The kinetic friction and normal force is shown
in Equation (2) only when the relative distance is less than zero. There is no
rotation in the normal direction of collision, thus no torque.

The normal force fv and horizontal force fh is formulated as follows, [29]

fv = min(ky + dvn, 0)

fh = −μm‖fv‖
{
1 if ‖vh‖ > vmin

‖vh‖/vmin else

where k is the spring constant, d is the damping term, y is the deformation in
the vertical direction, vn is the approaching velocity in the vertical direction, vh
is the relative velocity in the horizontal direction, vmin is an adjustment term
to avoid abrupt changes in the friction force through sign changes in vn.

32 Y. Zhou and J.S. Baras

Fig. 6. Simple example of a bouncing ball using spring damper model and nonelastic
collision. Upper plot shows y position while bottom one gives the velocity comparison.

This contact model is a model that is linear in distortion and linear in ap-
proaching velocity. The coefficient is tuned to achieve similar energy loss with
nonelastic collision with coefficient of restitution 0.5. As shown in Fig. 6, the re-
sult of the spring and damper model is well fit with the nonelastic collision model
with the chosen spring and damper constants. A more precise static model is
the Hertz model. In this case, the contact force is proportional to the distortion
to the power of 2/3. The Hertz model is a precise static model and it requires
a more precise understanding of the contact point. Because the contact point of
the millirobot has different shapes over the simulation time, the simplified spring
and damper models are more suitable for ground modeling.

4 Simulation Results and Discussion

The Modelica millirobot model is pieced together according to a Pro Engineering
model used for the initial structure design of the subject robot [27]. The leg,
as shown in Fig. 5, is modeled in Modelica as in Fig. 7(a). The joints have
specific details such as joint length, specified by the designer, and spring constant
determined by Equation (1) according to the material properties and geometry
of the flexible joint. The leg model is then linked together with other pieces as
shown in Fig. 7(b).

In simulation animation, the robot is seen as in Fig. 4. The overall Modelica
model of the robot is close to the physical model, with modifiable parameters
for geometry and material properties of the joints and rigid body parts. The
simulation results show that the model behaves close to the experiment (Fig. 8).

CPS Modeling Integration Hub and Design Space Exploration 33

(a) Modelica leg model (b) Overall model

Fig. 7. Fig. (a) describes the structure of the leg model in Modelica block diagram.
The joints rev, rev1, rev2 and rev3 are the joints with flexible material. Fig. (b) gives
a simplified structure of the robot using the leg submodel. The shaft mechanism is in
the middle with linkages to six legs on either side. The top right portion depicts the
motor.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Collision event over time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.012

0.014

0.016
Vertical position trajectory of estimated center of mass

y
po

si
tio

n
/ m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1
Horizontal velocity over time

x
ve

lo
ci

ty
 /

m
/s

t/s

Fig. 8. Modelica simulation results for the millirobot. The top plot depicts the ground
collision events over time of all six legs. The second plot shows the relative y position
of the motor to the ground. When the simulated robot flips, unstable behavior will be
shown in this plot. For this particular setup, it is stable and close to the stable behavior
in the experiment. The last plot on the bottom depicts the horizontal velocity.

34 Y. Zhou and J.S. Baras

Fig. 9. Modelica motor model. Because of physical na-
ture of electrical motors, the output torque is affine to
rotational speed. This model described the particular
motor used in the prototype design using its datasheet.

The motor block, as
shown in Fig. 9, is the
feedback control of the
robot, i.e. the cyber com-
ponent. Due to the phys-
ical properties of the
electrical motor, the out-
put torque is affine in
the rotational speed in-
put of the motor. This
model is directly obtained
using the physical proper-
ties of the electrical mo-
tor used in the prototype.
This motor can be controlled using Pulse Width Modulation (PWM), so that
the power is reduced and stability is improved. The PWM will also reduce the
torque to prevent joints from breaking. Other improvements are possible. For ex-
ample, in [27], the authors propose that future models can use additional weight
to create a complete 2D planar motion instead of only back and forward motion.
The controller for the weight will be more complicated and will require model-
based design instead of experimental only methods. Therefore, if more features
are to be added to the original prototype, the cyber component will be more
complicated and will need to be modified accordingly.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Collision event over time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.012

0.013

0.014
Vertical position trajectory of estimated center of mass

y
po

si
tio

n
/ m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1
Horizontal velocity over time

x
ve

lo
ci

ty
 /

m
/s

t/s

Fig. 10. The stability is improved if the torque is controlled using the sensor input
related to the ground contact.

From the second plot in Fig. 8, we note that the robot often bounces away from
the ground. The friction force, which is used to move the robot forward, is not
present, so such design is not efficient. More importantly, this causes instability
in the long term simulation. The subject robot has similar jumping instability

CPS Modeling Integration Hub and Design Space Exploration 35

in real experiments, but no solutions have been proposed to improve stability
[27]. Now consider a very simple modification of the model that has a PWM
motor control unit included so that the power output of the motor is reduced,
when the legs of the robot are not in contact with the ground. This makes the
model more stable as shown in Fig. 10. To understand further how the PWM
motor control helps the stability, one can observe the changes in the associated
limit cycle. Fig. 11(a) gives the initial trajectory of θl, θ̇l, θr and θ̇r within the
robot model, where θl and θr are the generalized coordinates θ1 of the left and
right legs, as shown in Fig. 5. From the trajectory, one deduces the limit cycle of
the hybrid system, and reset points due to collision as shown. After adding the
PWM motor control, the trajectory takes similar shapes (Fig. 11(b)). The major
change is that the swinging speed decreases by about 67%. The converging speed
from the reset point towards the limit cycle is faster as well.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

θ (rad)

d
θ/

dt
 (

ra
d/

s)

Trajactory of right leg
Trajectory of left leg
Estimated limit cycle
Reset point

(a) The original design.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

θ (rad)

d
θ/

dt
 (

ra
d/

s)

Trajactory of right leg
Trajectory of left leg
Estimated limit cycle
Reset point

(b) After adding PWM motor control.

Fig. 11. Fig. (a) (b) describe the trajectories of θl, θ̇l, θr and θ̇r before and after adding
the PWM motor control unit. Compared to the original design, the limit cycle with
PWM control takes similar shape, but swinging speeds, θ̇r and θ̇l, decrease by about
67%.

Simulation and system modeling lead to a new design that improves the effi-
ciency of the cyber side of the CPS. The new design also induces the cyber and
physical layers to cooperatively behave in a more stable manner.

5 Material Choice and Geometry Exploration

The material selection of the joints is very limited in [27], but in [30] the authors
proposed a way of constructing microstructures so that the overall performance
of the structure reflects the properties of different material layers. Though this
method was mainly used and implemented for thermal bending purposes, this
approach can be used in other areas. For microrobots, this means that material
selection can consider a much wider range. In the design process, one can design
a joint or segments with materials that are unknown but have properties within
some reasonable range. In the last step, one can design the microstructure so as
to fit the desired properties (specifications).

36 Y. Zhou and J.S. Baras

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Collision event over time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.012

0.0125

0.013

Vertical position trajectory of estimated center of mass

y
po

si
tio

n
/ m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0
Horizontal velocity over time

x
ve

lo
ci

ty
 /

m
/s

t/s

Fig. 12. The stability is improved by reducing the spring constant

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

θ (rad)

d
θ/

dt
 (

ra
d/

s)

Trajactory of right leg
Trajectory of left leg
Estimated limit cycle
Reset point

Fig. 13. The trajectories of θl, θ̇l, θr and θ̇r
after using modified joint width. Comparing
to the original design, the limit cycle takes
different shape, and swinging speed decrease
by about 90%.

In the subject robot [27], the key
design parameter is the joint spring
constant, which is affected linearly
by the elasticity modulus of the ma-
terial, and is proportional to h3.
Therefore, the internal torque be-
tween the joints can be made 8 times
larger by doubling the joint width.
Initially the spring constant is cho-
sen so that the internal torque be-
tween joints has about the same
magnitude as the maximum motor
torque. This may induce instability.
Fig. 12 shows the result for the same
shape of robot structure but with
half the joint width, which is still
within the reasonable range of joint
width in [27]. This design change seems to make the robot more stable. Further
exploration using limit cycle methods gives different results. As shown in Fig. 13,
the trajectory shows that the swinging speed decreases by 90%, and the shape
of the limit cycle changes. However the limit cycle may be unstable since the
trajectory keeps on shifting to the right with no sign of converging.

The material choice can increase the range of possible values for the joint
spring constant and even make the joint sustainable under large tension when
required in the design. However, changes in the material and geometry of the
joints add constraints to the controller, and in particular to the maximum torque
output of the motor.

CPS Modeling Integration Hub and Design Space Exploration 37

Now suppose we modify the geometry significantly and the new model takes
the shape of Fig. 4b. The shape of the legs is modified to emulate the legs of
a crab. The new design is obtained through trial and error to achieve a more
regulated walking behavior, i.e. bouncing forward but with similar height.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Collision event over time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.014

0.016

0.018

0.02

Vertical position trajectory of estimated center of mass

y
po

si
tio

n
/ m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2
Horizontal velocity over time

x
ve

lo
ci

ty
 /

m
/s

t/s

Fig. 14. Collision and motion behavior are different due to different geometry

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Collision event over time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.014

0.016

0.018

0.02
Vertical position trajectory of estimated center of mass

y
po

si
tio

n
/ m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2
Horizontal velocity over time

x
ve

lo
ci

ty
 /

m
/s

t/s

Fig. 15. By adding motor control, as can be seen in the second plot, the jumping
behavior is regulated and more stable compared to Fig. 14. The magnitude of the
speed is hardly increasing because the robot is constantly lifting off the ground.

As shown in Fig. 14, the robot bounces frequently but it is more regulated
and more stable compared to the previous design. Although the joint spring
constant has about the same magnitude as in Fig. 12, the behavior of the robot
is different. If explored further using the limit cycle, one concludes that the
collision for this design actually happened more irregularly, and the limit cycle

38 Y. Zhou and J.S. Baras

−1 −0.5 0 0.5 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

θ (rad)

d
θ/

dt
 (

ra
d/

s)

Trajactory of right leg
Trajectory of left leg
Reset point

(a) Microrobot with modified geometry.

−1 −0.5 0 0.5 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

θ (rad)

d
θ/

dt
 (

ra
d/

s)

Trajactory of right leg
Trajectory of left leg
Estimated limit cycle
Reset point

(b) After adding PWM motor control.

Fig. 16. Fig. (a) (b) describe the trajectories of θl, θ̇l, θr and θ̇r of the modified
microrobot before and after adding the PWM motor control unit. Compared to the
original design, the limit cycle takes different shape. For (a), the collision happened so
irregularly that the limit cycle is hardly visible. In (b), the collision is more regular
and converges to the limit cycle faster.

is hardly seen as shown in Fig. 16(a). One can use similar control to reduce the
instability as discussed in the previous section. The result is shown in Fig. 15
with its associated limit cycle analysis in Fig. 16(b). The jumping behavior is
regulated to be more stable but it cannot be removed completely in the case of
the new leg shape, which also shows the close relationship between the cyber
and the physical components of the robot. Thus the cyber components have to
be completely reconsidered as a result of changes in the physical part.

6 Tradeoff and Model Based System Design

As discussed in the previous section, the cyber components have to be adjusted or
even redesigned because of the changes in the physical components. A systematic
way of jointly considering physical modeling and control design is required. We
propose the framework described in Sections 1.2, 1.3, 1.4 for designing millirobots
as CPS (Fig. 3). SysML is used as a language for the structure description of the
robot, and also used as a linkage with trade-off tools so that material properties
trade-off can be performed based on efficiency and stability matrices.

So far the system level design is done in ModelicaML, which is a Java and XML
based metamodel which bidirectionally transforms between the UML model and
Modelica [31]. As can be seen in Fig. 17, the designer of the robots can use Mod-
elicaML tool (in Eclipse) to modify and simulate design using class definition di-
agram with underlying simulation engine OpenModelica. One can design control
algorithms and have control parameters tuned together with material properties
selection and associated trade-offs using the framework described earlier. The
model based approach makes the control algorithm easily modifiable, so that
different controller designs can be tested and verified.

CPS Modeling Integration Hub and Design Space Exploration 39

Fig. 17. This is the class diagram created in ModelicaML implementation in Eclipse
[31]. The structure model is abstracted from the synchronized Modelica model. The
model based approach in developing the Modelica model gives the designer of the
robots convenient ways to modify the key physical model parameters (joint width and
geometry specified by leg segments length) and the cyber components parameters like
PWM. The underline OpenModelica compiler is able to simulate the model at the same
time to perform verification tasks for material constraints.

Finite Element Analysis tools like COMSOL for material oriented simulation
can be integrated with Modelica to provide a more detailed model of the robot. In
this paper a joint is modeled as a torsion spring but clearly it is a simplification of
the linkage. One can use COMSOL to provide a more detailed nonlinear model of
the joint. The Modelica library FlexBody [32] can be used to solve this problem
as well. This library uses the output from FEA tools, such as Nastran, Genesis,
to reduce complex finite element models to models which consist of only few
boundary nodes, or attachment points.

For this particular prototype, the PWM modification comes from the fact that
decreasing torque applied by the motor directly increases the stability. In general
this insight can be drawn from the trade-off tools directly. Given material con-
straints, in particular the deformation condition of the joints, one can formulate
this problem as an optimization problem with objective to maximize efficiency
and stability matrices such as maximizing forward moving speed and minimizing
jumping heights. The tool we implemented in MagicDraw-SysML as shown in
Sections 1.2, 1.3, 1.4 can then be used to direct such modifications in the original
design. Geometrical modeling and design exploration need to take a different ap-
proach from our view. Few modifications of the geometry can dramatically alter
the problem. We suggest the combination of design and optimization in earlier
stages so that the overall geometry is fairly fixed with only minor changes. This
requires the CAD design to be integrated into the design as well. CATIA [33],
the 3D CAD tool which can interface with Dymola simulation, might be the best
approach for this. We suggest the following design process steps.

40 Y. Zhou and J.S. Baras

1. The designer of the robots defines system structure and high level sys-
tem design according to the requirement in SysML (System level design)
and detailed structure model in CATIA (geometric modeling), alternatively
the user can generate SysML/UML from Modelica/CATIA modeling us-
ing SysML4Modelica transformation [34] or ModelicaML [31]. The tool will
generate model structure as well as Modelica code through model
transformation.

2. To do design space exploration such as material trade-off, designer can use
FEA tool to generate joint model for several materials so that it can be linked
with Modelica through the FlexBody Modelica library. Then the designer has
to specify objectives in terms of stability matrices such as jumping height or
limit cycle criteria, and performance matrices such as forward motion speed
and energy transformation ratio. Constraints, such as the maximum torques
the link can sustain, also need to be specified. The trade-off is then done
using Consol-Optcad with Modelica simulation.

3. Based on the Consol-Optcad suggestions, the designer has to modify the
initial design and go back to system level design and verify that all the
requirements are met. If not, the constraints of the previous step have to
be refined and the designer will go through the process again until all the
requirements are satisfied.

7 Conclusions

To conclude, microrobots are complex CPS, and their cyber part cannot be de-
signed separately from the physical part. In this paper, we described a
model-based systems engineering methodology and framework for the design
of microrobots as CPS. The physical model and associated control of a particu-
lar prototype were examined to demonstrate the close relationship between the
physical and cyber parts. We also proposed improvements of the control laws so
that the system is more stable and demonstrated these improvements by mod-
eling and simulation. The control laws for the design of this particular type of
robot, such as those shown in Fig. 4a or 4b, can be designed via tradeoff with
material properties as tunable parameters. They may also need to be redesigned
when the geometrical shape changes are significant.

Acknowledgements. We would like to thanks Dana E. Vogtmann for providing
experimental demonstrations so we could compare with the models we built. We
would also like to thank members of the OpenModelica Association who have
kindly helped us solve Modelica related problems.

Research supported in part by the National Science Foundation (NSF) un-
der grant award CNS-1035655 and by the National Institute of Standards and
Technology (NIST) grant award 70NANB11H148

CPS Modeling Integration Hub and Design Space Exploration 41

References

1. Austin, M.A., Baras, J.S., Kositsyna, N.I.: Combined Research and Curriculum
Development in Information-Centric Systems Engineering. In: Proc. of the 12th
Annual Intern. Council on Systems Engineering (INCOSE) Symposium (2002)

2. Yang, S., Baras, J.S.: Factor Join Trees in Systems Exploration. In: Proceedings of
the 23rd International Conference on Software and Systems Engineering and their
Applications (ICSSEA 2011), Paris, France (2011)

3. Wang, B., Baras, J.S.: Integrated Modeling and Simulation Framework for Wireless
Sensor Networks. In: Proceedings of the 21st IEEE International Conference on
Collaboration Technologies and Infrastructures (WETICE 2012- CoMetS track),
Toulouse, France, pp. 268–273 (2012)

4. Yang, S., Zhou, Y., Baras, J.S.: Compositional Analysis of Dynamic Bayesian Net-
works and Applications to Complex Dynamic System Decomposition. In: Proc. of
the Conf. on Systems Engineering Research, CSER 2013 (2013)

5. Yang, S., Wang, B., Baras, J.S.: Interactive Tree Decomposition Tool for Reduc-
ing System Analysis Complexity. In: Proc. of the Conf. on Systems Engineering
Research, CSER 2013 (2013)

6. Spyropoulos, D., Baras, J.S.: Extending Design Capabilities of SysML with Trade-
off Analysis: Electrical Microgrid Case Study. In: Proc. of the Conference on Sys-
tems Engineering Research, CSER 2013 (2013)

7. International Council on Systems Engineering (INCOSE): Systems Engineering
Vision 2020. Version 2.03, TP-2004-004-02 (2007)

8. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML. The
MK/OMG Press (2009)

9. Baras, J.S.: Lecture Notes for MSSE class, ENSE 621 (2002)

10. Haskins, C., Forsberg, K., Krueger, M., Walden, D., Hamelin, D.: Systems Engi-
neering Handbook. INCOSE, San Diego (2011)

11. The eMoflon team: An Introduction to Metamodelling and Graph Transformations
with eMoflon, V 1.4. TU Darmsadt (2011)

12. Anjorin, A., Lauder, M., Patzina, S., Schurr, A.: eMoflon: Leveraging EMF and
Professional CASE Tools. In: INFORMATIK 2011, Bonn (2011)

13. No Magic, Inc.: Open API-User Guide. Version 17.0.1 (2011)

14. Meyer, J., Ball, M., Baras, J.S., Chowdhury, A., Lin, E., Nau, D., Rajamani,
R., Trichur, V.: Process Planning in Microwave Module Production. In: Proc.
SIGMAN: AI and Manufacturing: State of the Art and State of Practice (1998)

15. Fan, M.K.H., Tits, A.L., Zhou, J., Wang, L.-S., Koninckx, J.: CONSOLE-User’s
Manual. Technical report, Un. of Maryland, Vers. 1.1 (1990)

16. Fan, M.K.H., Wang, L.-S., Koninckx, J., Tits, A.L.: Software Package for
Optimization-Based Design with User-Supplied Simulators. IEEE Control Systems
Magazine 9(1), 66–71 (1989)

17. Tischler, M.B., Colbourne, J.D., Morel, M.R., Biezad, D.J.: A Multidisciplinary
Flight Control Development Environment and its Application to a Helicopter.
IEEE Control Systems Magazine 19(4), 22–33 (1999)

18. Potter, P.J.: Parametrically Optimal Control for the UH-60A (Black Hawk) Ro-
torcraft in Forward Flight. MS Thesis, Un. of Maryland (1995)

19. Nagy, Z., Ergeneman, O., Abbott, J., Hutter, M., Hirt, A., Nelson, B.: Model-
ing assembled-mems microrobots for wireless magnetic control. In: Proc. of IEEE
Intern. Conf. on Robotics and Automation, ICRA 2008, pp. 874–879. IEEE (2008)

42 Y. Zhou and J.S. Baras

20. Mohebbi, M.H., Terry, M.L., Böhringer, K.F., Kovacs, G.T.A., Suh, J.W.: Omni-
directional walking microrobot realized by thermal microactuator arrays. In: Proc.
of 2001 ASME Intern. Mech. Engin. Congress and Exposition, pp. 1–7 (2001)

21. Donald, B., Levey, C., McGray, C., Paprotny, I., Rus, D.: An untethered, electro-
static, globally controllable mems micro-robot. Journal of Microelectromechanical
Systems 15, 1–15 (2006)

22. Bergbreiter, S., Pister, K.: Cotsbots: an off-the-shelf platform for distributed
robotics. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003), vol. 2, pp. 1632–1637. IEEE (2003)

23. Erdem, E., Chen, Y.M., Mohebbi, M., Suh, J., Kovacs, G., Darling, R.,
Öandhringer, K.B.: Thermally actuated omnidirectional walking microrobot. Jour-
nal of Microelectromechanical Systems 19, 433–442 (2010)

24. Churaman, W., Currano, L., Morris, C., Rajkowski, J., Bergbreiter, S.: The first
launch of an autonomous thrust-driven microrobot using nanoporous energetic
silicon. Journal of Microelectromechanical Systems 21, 198–205 (2012)

25. Hiller, J., Lipson, H.: Automatic design and manufacture of soft robots. IEEE
Transactions on Robotics 28, 457–466 (2012)

26. Fritzson, P.: Introduction to Modeling and Simulation of Technical and Physical
Systems. Wiley-IEEE Press (2011)

27. Vogtmann, D.E., Gupta, S.K., Bergbreiter, S.: Multi-material compliant mecha-
nisms for mobile millirobots. In: Proceedings 2011 IEEE International Conference
on Robotics and Automation (ICRA), pp. 3169–3174 (2011)

28. Bellouard, Y.: Microrobotics: Methods and Applications. CRC Press (2010)
29. Otter, M., Elmqvist, H., Dı́ López, J.: Collision Handling for the Modelica Multi-

Body Library. In: Proc. of the 4th Intern. Modelica Conf., pp. 45–53 (2005)
30. Shin, M., Gerratt, A.P., Metallo, C., Brindle, A., Kierstead, B.P., White, R.D.:

Characterization of a micromachined parylene-based thermal c-shape actuator.
Journal of Micromechanics and Microengineering 21(9), 095028 (2011)

31. Schamai, W.: Modelica Modeling Language (ModelicaML): A UML Profile for
Modelica. Tech. Rep. 2009:5, Linköping University, Department of Computer and
Information Science (2009)

32. Dymola libraries flexbody | claytex,
http://www.claytex.com/products/dymola/model-libraries/flexbody-library

33. CATIA systems engineering,
http://www.3ds.com/products/catia/solutions/catia-systems-engineering

34. SysML-Modelica Transformation (SyM), http://www.omg.org/spec/SyM/1.0

http://www.claytex.com/products/dymola/model-libraries/flexbody-library
http://www.3ds.com/products/catia/solutions/catia-systems-engineering
http://www.omg.org/spec/SyM/1.0

	CPS Modeling Integration Hub and Design Space Exploration with Application to Microrobotics
	1
Introduction: Synthesis Environment for CPS
	1.1
Model-Based Systems Engineering
	1.2
Systems Modeling Language (SysML)
	1.3
CPS Modeling Integration Hub Architecture
	1.4
Tradeoff Analysis and Design Space Exploration

	2
System Level Design of Microrobots as CPS
	3
The Physical Model
	3.1
Flexible Joint Model
	3.2
Kinematics Model
	3.3
Ground Interaction

	4
Simulation Results and Discussion
	5
Material Choice and Geometry Exploration
	6
Tradeoff and Model Based System Design
	7
Conclusions

